quarta-feira, 4 de março de 2020


TRANS-QUÃNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



histerese é a tendência de um sistema de conservar suas propriedades na ausência de um estímulo que as gerou, ou ainda, é a capacidade de preservar uma deformação efetuada por um estímulo. Podem-se encontrar diferentes manifestações desse fenômeno. A histerese mais conhecida ocorre no magnetismo[1], mas também pode ocorrer em diversas áreas como mecânica clássica[2]tráfego[3]biologia[4]epidemiologia[5] entre outras[6][7] . A palavra "histerese" deriva do grego antigo υστέρησις, que significa 'retardo', que foi cunhada por James Alfred Ewing em 1890.

Saturação magnética[editar | editar código-fonte]

Quando um campo magnético  (ampere-espira por metro) é aplicado a um material ferromagnético, passa a circular neste uma densidade de fluxo magnética (ou indução magnética)  (tesla = weber por metro quadrado). A relação entre densidade de fluxo e campo magnético é dada pela expressão [8].
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Para uma geometria fixa, como o caso de uma bobina com núcleo fixo ou transformador, uma variação do campo magnético  é dada por uma variação na corrente da bobina que está sendo alimentada. Quanto maior a corrente , maior o campo magnético [9].
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Na região magnética linear  com  constante (e da ordem de  ou mais), contudo, à medida que o campo magnético cresce, o material entra em uma região não linear (saturação magnética), onde  passa a diminuir à medida que a saturação cresce.

Inconveniente da saturação[editar | editar código-fonte]

Quando atingida a saturação o transformador, mesmo a vazio, passa a demandar correntes maiores para manter o fluxo magnético imposto pela tensão. A relação entre fluxo magnético e tensão induzida é dada pela Lei de Faraday[10]. Uma das formas de expressá-la é por , onde  é o fluxo magnético,  é o tempo ,  o número de espiras e  é a tensão induzida. Para simplificar a análise (e sem prejuízo de conceitos) consideraremos a tensão induzida no primário igual a tensão aplicada pela fonte.
Imaginando uma tensão de entrada sinusoidal , o fluxo demandado pelo núcleo do transformador será dado por , ou seja, o fluxo é diretamente proporcional a tensão e a frequência de entrada. Trabalhando mais um pouco, pode-se chegar a expressão que o fluxo de pico de um sinal sinusoidal é dado por 
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



onde  é a frequência em hertz.
densidade de fluxo que atenda ao fluxo demandado é dada pela relação , onde  é a área da secção transversal à passagem do fluxo magnético[10]. Associada a densidade de fluxo magnético está o campo magnético  que o gera, dado por . Perceba que com a redução da permeabilidade (na saturação), um maior campo magnético muito maior é demandado, e este, por fim, está associado à corrente elétrica  que o gera, que por consequência, pode aumentar para valores muito acima dos nominais, mesmo com o transformador a vazio.
Para evitar este inconveniente deve-se trabalhar com valores baixos de saturação, limitando a tensão aplicada, aumentando a área de ferro ou aumentando a qualidade dos materiais.

Histerese magnética[editar | editar código-fonte]

Laço de Histerese.
  1. Aumenta-se a densidade de fluxo magnética (ou indução magnética)  aplicada a um material ferromagnético até a saturação. A relação entre campo e densidade de fluxo neste intervalo é dada por . Quando mais saturado o material menor o valor da permeabilidade .
  2. Diminuí-se a densidade de fluxo e como consequência também o campo  diminui. Contudo, quando  chega a zero (corrente zero), ainda existe uma densidade de fluxo remanescente,  (o material fica imantado).
  3. Para que  chegue a zero, é necessário aplicar um campo negativo, chamado de força coercitiva, .
  4. Se  continuar aumentando no sentido negativo, o material é magnetizado com polaridade oposta. Desse modo, a magnetização inicialmente será fácil, até quando se aproxima da saturação, passando a ser difícil.
  5. A redução do módulo do campo novamente a zero deixa uma densidade de fluxo remanescente, , e, para reduzir  a zero, deve-se aplicar uma força coercitiva  no sentido positivo.
  6. Aumentando-se mais ainda o campo, o material fica novamente saturado, com a polaridade inicial.
Nesse fenômeno, observa-se o atraso entre densidade de fluxo e campo magnético ( quando ), chamado de histerese magnética.
O ciclo traçado pela curva de magnetização é chamado de ciclo de histerese.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



RELATIVIDADE SDCTIE GRACELI EM

Em electromagnetismo a susceptibilidade magnética (designada por ) mensura a capacidade que tem um material em magnetizar-se sob a ação de uma estimulação magnética - de um campo magnetizante - ao qual este é submetido.

    Magnetização[editar | editar código-fonte]

    Na presença de uma excitação magnética , os vários momentos magnéticos eletrônicos ou nucleares - ou seja, o dipolos atômicos - vão dividir-se em diferentes orientações segundo os níveis de energia que lhe sejam mais convenientes. A forma como a matéria responde à estimulação magnética depende entretanto não apenas do comportamento individual destes dipolos magnéticos frente ao estímulo externo mas também de como estes relacionam-se entre si e de como esta relação é afetada pelo campo estimulante. A resposta ao estímulo é expressa na forma de uma magnetização  do material, e há materiais que respondem de forma a opor-se fracamente à presença do estímulo em seu interior e há os que respondem fracamente a favor do estímulo, ambos fazendo-no de forma geralmente proporcional ao estímulo. Os primeiros são classificados como materiais diamagnéticos e os últimos constituem o grupo dos materiais paramagnéticos. Há ainda os materiais que respondem de forma intensa ao campo estimulante - os ferromagnéticos - e os que não respondem - os antiferromagnéticos.

    Susceptibilidade[editar | editar código-fonte]

    Em materiais paramagnéticos e diamagnéticos sob ação de um campo estimulante não muito intenso a magnetização é proporcional à estimulação magnética aplicada, sendo por esta estimulação, qualquer que seja o valor do estímulo, sustentada: quando remove-se o campo estimulante, a magnetização destes materiais desaparece.
    O coeficiente de proporcionalidade, designada por , define a susceptibilidade magnética do meio ou do material considerado.
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    sendo:
    •  a magnetização induzida, mensurada em ampere por metro (A/m);
    •  a susceptibilidade magnética (adimensional) do material.
    Com base no sinal da susceptibilidade pode-se afirmar que:
    • quando  é positivo, tem-se o caso de um material paramagnético.
    • quando  é negativo, tem-se o caso de um material diamagnético.

    Existe uma relação entre a susceptibilidade magnética e a permeabilidade magnética do meio, esta última a constante de proporcionalidade que relaciona o campo magnético total  resultante tanto do estímulo quanto da magnetização induzida com o campo estimulante . Sendo  permeabilidade relativa do material:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Susceptibilidade de alguns materiais[editar | editar código-fonte]

    A tabela abaixo [Ref. 2] apresenta alguns valores da susceptibilidade magnética para materiais tanto paramagnéticos como diamagnéticos:
    Susceptibilidade magnética de alguns materiais
    DiamagnéticosParamagnéticos
    Bismuto-1,6 × 10-4Oxigênio+1,9x10-6
    Ouro-3,4×10-5Sódio+8,5x10-6
    Mercúrio-2,8x10-5Titânio+1,8x10-6
    Prata-2,4x10-5Alumínio+2,1x10-5
    Cobre-9,7x10-6Tungstênio+7,8x10-5
    Água-9,0×10-6Platina+2,4x10-4
    Dióxido de carbono-1,2x10-8Oxigênio (líquido)+3,9x10-3
    Hidrogênio-2,2x10-9Gadolínio+4,8x10-1
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    De acordo com a equação constitutiva da matéria utilizada no sistema S.I., a magnetização M e a excitação magnética H têm a mesma unidade. A susceptibilidade magnética, que não é mais do que uma relação entre essas duas grandezas, não tem unidades (grandeza adimensional).




    RELATIVIDADE SDCTIE GRACELI EM

    Na física, uma lei é dita lei de potência se entre dois escalares x e y ela é tal que a relação pode ser escrita na forma:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    onde a (a constante de proporcionalidade) e k (o expoente) são constantes.[1]
    A lei de potência é expressa por uma linha reta em um gráfico log-log, pois a equação anterior se pode ser escrita como
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    que é a mesma forma da equação de uma reta.
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    Historicamente, a lei de Pareto foi a primeira lei de potência descoberta.



    RELATIVIDADE SDCTIE GRACELI EM

    Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.

    Grupo de renormalização no espaço de momentos[editar | editar código-fonte]

    Suponha uma teoria quântica de campos com campos  e constantes de acoplamento  descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de 
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    Chamaremos esse campos de  e diremos que ele é o campo na escala . Então
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Também chamaremos a constante de acoplamento de . A função partição sobre os campos  é
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Já que alguns dos modos de Fourier estão faltando, o campo  é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita  regulares.[2]
    Vamos decompor a região de integração da expansão em modos em duas partes:
     e 
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    Chamaremos as expansões em modos correspondentes por
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre  na integral de trajetória, mantendo  variável
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Aqui,  e  são os novos campos, em termos dos quais a ação efetiva
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    é regular no limite para o contínuo. Os campos  e as contantes  na escala de corte  são chamados de campos nus e constantes de acoplamentos nuas, enquanto  e  são ditas renormalizados.

    Equação de Callan-Symanzik[editar | editar código-fonte]

    Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar  e variar . Nós fixamos os campos  e constantes de acoplamento  numa escala  (com os valores medidos nessa escala) e mudamos os campos nus  e as contantes nuas . Se pudermos mover  para o infinito sem mudar o comportamento do sistema na energia  (descrito por  e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.
    Uma outra forma de ver é mover , fixando  e consequentemente  e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de  para , as constantes de acoplamento mudarão de  para , onde  
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever 
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


    Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



    Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial  é chamado função beta da constante de acoplamento .